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Abstract: Soil classification by piezocone penetration tests (CPTU) is mainly accomplished using 

empirical soil behavior charts (SBT). While commonly-used SBT methods work well to separate 

fine-grained soils from granular coarse-grained soils, in many instances, the groupings often fail to 

properly identify different categories of clays, specifically: (a) ―regular‖ clays that are inorganic and 

insensitive, (b) sensitive and quick clays; and (c) organic soils. Herein, a simple means of screening 

and sorting these three clay types is shown using three analytical CPTU expressions for evaluating 

the preconsolidation stress profile from net cone resistance, excess porewater pressure, and effective 

cone resistance. A number of case studies are utilized to convey the methodology. 
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1. Introduction  

Cone penetration testing (CPT), particularly piezocone testing (CPTU), obtains detailed 

stratigraphic profiling of soil layers by collecting three distinct measurements with depth: (a) 

cone tip resistance, qt; (b) sleeve friction, fs; and (c) porewater pressure, u2, during the 

advancement of an electronic steel probe that is hydraulically pushed vertically at a constant rate 

of 20 mm/s. Since soil sampling is not normally conducted during cone penetration testing, 

different approaches are used for post-processing piezocone data to identify and classify soil type: 

(a) relating CPT readings to the logs of adjacent boreholes and recovered samples subjected to 

laboratory testing; (b) relying on rules-of-thumb; (c) using empirical soil behavioral type (SBT) 

charts; (d) adopting probabilistic methods [1]. 

The most common method of soil classification by CPTU employs empirical soil behavioral type 
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(SBT) charts which have been developed by various researchers such as Robertson [2], Lunne et al. [3], 

Eslami and Fellenius [4], Schneider et al. [5], and Jefferies & Been [6]. One of the most popular charts is 

comprised of 9 soil zones that relies on normalized piezocone parameters (termed SBTn), namely: (1) 

normalized cone resistance, Q = qnet/vo’, (2) normalized sleeve resistance, F (%) = 100∙fs/qnet, and (3) 

normalized porewater pressure, Bq = u2/qnet, where qnet = qt − vo, u2 = u2 − u0, vo = total overburden stress, 

u0 = hydrostatic porewater pressure, and vo’ = effective vertical stress [3]. An update uses a modified form 

of Q that is termed Qtn where the vo’ term has a power law format, as detailed by Robertson [7].  

While all the charts include zones for sand, silt, and clay, the delineations by Eslami and 

Fellenius [4] do not include a zone specific for organic soils, while the method of Jefferies & Been [6] 

does include organic soils, but not a distinct region to identify sensitive soils. The SBTn charts 

generally work well in differentiating gravelly sands (zone 7) from clean sands (zone 6), sandy 

mixtures (zone 5), silts (zone 4), and clays (zone 3), as shown in Figure 1 for regular clays. However, 

clay soils that have a special nature, including sensitive clays (zone 1) and organic soils (zone 2), can 

be mis-classified as zone 3 (clays to clayey silts). 

For sensitive and quick clays, several studies have indicated the shortcomings of SBTn charts in 

correctly assigning the appropriate zone 1 (e.g., [1,8–14]). Figure 1 illustrates a summary plot for a 

number of sensitive fine-grained soils, as compiled and reported by Agaiby [1], falling incorrectly in 

zones 3 and 4 instead of zone 1. This is important because sensitive clays are unstable, prone to 

landsliding, and susceptible to collapse. 

A similar issue arises when the SBTn misplaces clays that should locate in zone 2 (organic soils) 

but instead classifies the soils as either zone 1 (sensitive), zone 3 (clays), or zone 4 (silts) as noted by 

several authors [1,15–21]. Figure 1 shows the Q-F and Q-Bq charts with representative CPTU data 

from 24 organic fine-grained soil sites, where only 1 or 2 of the organic clays are properly identified as 

zone 2 [1]. Again, the misdiagnosis can be important because organic clays are associated with high 

compressibility, large foundation, settlements, undrained and drained creep, and bio-degradation issues. 

The same issues for CPTU in sensitive and organic clays arise when plotting these groups on 

alternate classification charts. Figure 2a illustrates the data on the Unicone Chart [22] where there is no 

zone provided for organic clays and several sensitive clays are misidentified. Moreover, the CPTU 

classification chart by Jefferies & Been [6] has no specific zone allocated for sensitive and structured 

clays, while it misses correctly classifying many of the organic clays, as presented in Figure 2b. 

2. Analytical CPTU solutions for clays 

Herein, an alternate means of identifying clay types by CPTU are grouped into three categories: 

(1) ―regular‖ clays that are insensitive and inorganic; (2) sensitive clays; and (3) organic soils. This is 

accomplished using effective preconsolidation stress (p’) profiles developed from the CPTU 

readings that are based on an analytical solution that evaluates overconsolidation ratio (OCR = 

p’/vo’) as functions of qnet, u2, and qE. For regular clays and sensitive clays, a separate 

closed-form limit plasticity approach evaluates the effective friction angle characteristics of the clay. 
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Figure 1. A compilation of CPTU data from regular, sensitive, and organic clays using 

empirical SBTn charts: (a) Qtn-Fr; (b) Qtn-Bq (after [1]). 

 

(a)                                                   (b) 

Figure 2. Misidentification of sensitive and organic clays on: a) the Unicone Chart by 

Fellenius & Eslami [22]; and b) Jefferies & Been [6] classification chart.  
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2.1. SCE-CSSM solution 

A hybrid formulation of spherical cavity expansion (SCE) and critical state soil mechanics 

(CSSM) expresses the overconsolidation ratio (OCR) of clays in three separate formulations 

using net cone tip resistance (qnet = qt − vo), excess pore pressure (u2 = u2 − u0), and effective cone 

resistance (qE = qt − u2). Details of the solution for insensitive inorganic clays are given by 

Mayne [23], Chen & Mayne [24], and Burns & Mayne [25], whereas the application in sensitive 

and structured clays is provided by Agaiby & Mayne [26]; Mayne et al. [27,28]; DiBuö et al. [29]; 

and Mayne & Benoît [14].  

Three separate algorithms relate the OCR to normalized CPTU parameters: Q = qnet/vo’ and U = 

u2/vo’, where qnet = qt – vo = net cone resistance and u2 = u2 − u0 = excess porewater pressure. These 

are expressed by the following: 

𝑂𝐶𝑅 = 2 ∙  
𝑄/𝑀𝑐1

0.667 ∙ ln 𝐼𝑅 + 1.95
 

1/𝛬

 (1)  

𝑂𝐶𝑅 = 2 ∙  
𝑈∗ − 1

0.667 ∙ 𝑀𝑐2 ∙ ln 𝐼𝑅 − 1
 

1/𝛬

 (2)  

𝑂𝐶𝑅 = 2 ∙  
𝑄 − 𝑀𝑐1

𝑀𝑐2
∙(𝑈∗−1)

1.95 ∙ 𝑀𝑐1 + 𝑀𝑐1
𝑀𝑐2

 

1/𝛬

 (3)  

where  = 1 – Cs/Cc = plastic volumetric strain potential, Cs = swelling index, Cc = virgin compression 

index, IR = G/su = undrained rigidity index, M = 6·sin’/(3-sin’) = frictional parameter in q-p’ space. 

The value of Mc1 is defined at peak strength (i.e., ’ at qmax) whereas Mc2 is the value defined at large 

strains which occurs at maximum obliquity (i.e., ’ when the ratio [1’/3’] max). For insensitive clays, 

the value of ’ at qmax is equal to ’ at (1’/3’)max, and thus Mc = Mc1 = Mc2. For insensitive clays, the 

value of  = 0.80, whereas for sensitive clays, a value of  ≈ 1.0 is more suitable. 

While equations (1) and (2) both depend on the IR of the clay, Equation (3) is independent of the 

IR and is obtained by combination of the first two formulations. The rigidity index is thus given 

directly from [30]: 

𝐼𝑅 = 𝑒𝑥𝑝  
1.5 + 2.925 ∙ 𝑀𝑐1 ∙ 𝑎𝑞

𝑀𝑐2 − 𝑀𝑐1 ∙ 𝑎𝑞
  (4)  

where aq = (U – 1)/Q = (u2 – σvo)/(qt – σvo). The parameter aq can be determined as a single value for 

any clay layer or uniform clay deposit by taking the slope of a plot of the parameter (U-1) versus Q, 

or alternatively taken as the slope of (u2 – σvo) versus (qt – σvo). Using regression analyses, slightly 

different slope values for aq are obtained. 

2.2. NTH solution for ’ from CPTU 

In the event that laboratory-measured values from triaxial compression tests are not available, 

the effective friction angle can be evaluated using an effective stress limit plasticity solution for 

undrained penetration developed by Senneset et al. [31] and Sandven et al. [10,11] at the 
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Norwegian University of Science and Technology (NTNU), formerly NTH. For soft to firm clays, 

it can be adopted that effective cohesion intercept c’ = 0, where an approximate expression is given 

by Mayne [32,33]:  

𝜙′  =  29.5°⋅ 𝐵𝑞
0.121 [0.256 + 0.336 ⋅ 𝐵𝑞 + 𝑙𝑜𝑔𝑄] (5)  

which is valid for the following parametric ranges: 20°≤ ’ ≤ 45° and 0.1 ≤ Bq ≤ 1.0 and OCRs < 

2.5. Additional details for NC and OC insensitive clays are provided by Ouyang & Mayne [34,35], 

while ’ from CPTU in sensitive clays is addressed by Mayne et al. [28], DiBuo et al. [29], and 

Mayne & Benoît [14].  

2.3. Simplified approach for insensitive and inorganic clays 

A series of simplifications can be made for insensitive inorganic clays, or ―regular‖ and ―normal‖ 

clays. For one, equation (2) can be approximated by: 

𝑂𝐶𝑅 ≈ 2 ∙  
𝑈

0.667 ∙ 𝑀𝑐2 ∙ ln 𝐼𝑅 
 

1/𝛬

 (6)  

As noted previously for regular clays which are inorganic and insensitive, the values Mc = Mc1 = 

Mc2, therefore equation (3) reduces to:   

𝑂𝐶𝑅 = 2 ∙  
1

1.95𝑀𝑐 + 1
 
𝑞𝑡 − 𝑢2

𝜎𝑣𝑜 ’
  

1/Λ

 (7)  

For a first-order estimate of p’ in regular clays, further simplifications are achieved by: (a) 

setting the exponent  = 1 to reduce the power law format to linear equations; (b) adopting a 

characteristic effective friction angle of clay ’ = 30° (Mc = 1.2), and (c) using a default value of IR = 

100 [33,36]. The reduced expressions become simple linear trends: 

p’ ≈ 0.33 qnet = 0.33 (qt − vo)                               (8)  

p’ ≈ 0.53 u2 = 0.53 (u2 − uo)  (9)  

p’ ≈ 0.60 qE = 0.60 (qt − u2) (10)  

Table 1 lists several selected examples of regular or normal clays that have been subjected to both 

field CPTU and drilling with soil sampling operations. Laboratory testing was performed on recovered 

samples using standard classification methods and one-dimensional consolidation. Illustrative examples 

of CPTU soundings in four regular clays are presented in Figure 3 showing their three readings with 

depth: qt, fs, and u2. Applying equations (8), (9), and (10) to the piezocone soundings, Figure 4 shows the 

good comparison matching of OCR = p/vo’ profiles from the CPTU with reference values from 

laboratory consolidometer testing on undisturbed samples. For the presented cases listed in Table 1, all 

three OCR expressions from the CPTU agree with each other and are verified with lab benchmark values 

obtained from consolidation testing, thereby indicating the signature of regular clays. 
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Table 1. Select CPTU database of ―Regular‖ clays that are inorganic and insensitive. 

Clay Site Location OCR Reference Measurement 

Method*** 

Reference(s) 

Onsøy soft clay, Historic NTS* Norway IL [37,38,39] 

Busan soft clay* South Korea IL [40,41] 

Ballina soft clay NTS* Australia CRS [42,43,44] 

Bothkennar soft clay NTS* United Kingdom CRS, IL, RF [45] 

Chicago soft clay, NTS* NWU**, Illinois, USA IL [21] 

San Francisco, soft Bay Mud California, USA CRS [20] 

Lower Troll East soft clay North Sea IL [46] 

Port of Brisbane, soft clay Australia IL [46] 

Notes: * NTS = national test site and presented in current study; ** NWU = Northwestern University; *** IL = Incremental 

load oedometer tests; RF = Restricted flow consolidation tests; CRS = Constant Rate of Strain consolidation tests. 

3. Piezocone screening of sensitive clays 

A selected group of 8 sensitive clays that have been field tested by CPTU has been compiled 

and listed in Table 2. The sources of data and information are given here, along with the calibrated 

values of 1’ and 2’ using the modified SCE-CSSM formulations. Figures 5 and 6 present the CPTU 

soundings for these sensitive clays.  

Initially, the set of simplified expressions for OCR from CPTU are applied to these eight clays, 

with the results shown in Figures 7 and 8. The stress history estimates using equations (8), (9), and 

(10) clearly show mismatching of the OCR profiles amongst each other and evident disagreement 

when compared to lab reference values from consolidation tests. Moreover, a consistent hierarchy 

can be observed which gives the signature identification of sensitive clays: 

0.60 qE < 0.33 qnet < 0.53 u2  (11)  

Additional screening of sensitive clays verifies this approach and hierarchy of the qnet, u2, and 

qE equations, as documented for the following: Gloucester NTS, Ontario [26], Haney sensitive clay, 

BC [27], sensitive Tiller-Flotten clay, Norway [28], and sensitive Presumpscot clay in NH [14].  



559 

AIMS Geosciences  Volume 7, Issue 4, 553–573. 

 

Figure 3. Piezocone soundings for ―regular‖ clays that are insensitive and inorganic: a) 

Onsøy, Norway; b) Busan, Korea; c) Ballina, Australia; and d) Bothkennar, UK. 

 

Figure 4. Simplified OCR expressions for regular clays from CPTU along with lab 

reference values from consolidation tests for: a) Onsøy; b) Busan; c) Ballina; and d) 

Bothkennar. 
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Table 2. Select CPTU database of sensitive clays used for case study applications. 

Clay Site Location OCR 

Method

1’ at peak 

strength 

2’ at maximum 

obliquity 

Undrained 

Rigidity 

Index, IR 

 Reference(s) 

Dover, NH* USA IL 28.7 36.7 260 0.9 [14,47] 

Saint Jude, QC* Canada IL 29.0 30.0 200 0.95 [48,49,50] 

Skatval* Norway CRS 23.0 31.0 123 1.0 [51] 

Perniö* Finland CRS 30.0 33.4 140 1.0 [29,52,53]  

Quyon, QC* Canada NA 26.0 34.0 151 0.95 [54,55] 

Slomarka* Norway IL 22.0 34.0 100 0.95 [51] 

St. Hilaire, QC* Canada IL 28.0 32.0 200 0.95 [56,57] 

Dragvoll* Norway IL, CRS 31.0 38.0 279 1.0 [10,11,58,59] 

Tiller-Flotten Norway CRS 26.0 36.0 132 0.95 [28] 

Haney, BC Canada IL 22.5 32.3 181 0.95 [27] 

Skatval Norway CRS 23.0 31.0 124 1.0 [51] 

Koa Norway CRS 28.0 41.0 67 1.0 [51] 

Lempaala Finland CRS NA NA 88 1.0 [29] 

Masku Finland CRS 30.0 36.9 124 1.0 [29] 

Paimio Finland CRS 27.5 33.7 138 1.0 [29] 

Sipoo Finland CRS 25.4 33.7 332 1.0 [29] 

Note: * = Presented in current study; NA = not available; IL = Incremental load oedometer tests; CRS = Constant Rate of 

Strain test.  

 

Figure 5. Piezocone soundings for sensitive and structured clays: a) Dover, NH; b) Saint 

Jude, QC; c) Skatval, Norway; and d) Perniö, Finland. 
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Figure 6. Piezocone soundings for sensitive and structured clays: a) Quyon, QC; b) 

Slomarka, Norway; c) Saint Hilaire, QC; and d) Dragvoll, Norway. 

 

Figure 7. Simplified OCR expressions for CPTU in sensitive clays along with lab reference 

values from consolidation tests for: a) Dover; b) Saint Jude; c) Skatval; and d) Perniö.  
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Figure 8. Simplified OCR expressions for CPTU in sensitive clays along with lab 

reference values from consolidation tests for: a) Quyon; b) Slomarka; c) Saint Hilaire; 

and d) Dragvoll clays. 

To assess the OCR from CPTU in sensitive clays, equations (1), (2), and (3) are utilized with 

corresponding Mc1 and Mc2 that can be obtained from the original NTH expression [34] and modified 

NTH expression [35], respectively. Results from laboratory triaxial compression tests also confirm 

and validate these values. Appropriate values of 1’, 2’, and  for the 8 sensitive clays are listed in 

Table 2 and applied to the CPTU results for OCR profiles in Figures 9 and 10. The agreement with 

the three CPTU equations is good as well as reasonable and comparable to the reference OCR 

profiles obtained from one-dimensional consolidation tests.  

 

Figure 9. Modified SCE-CSSM solution for OCR in sensitive clays along with lab reference 

values from consolidation tests for: a) Dover; b) Saint Jude; c) Skatval; and d) Perniö. 
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Figure 10. Modified SCE-CSSM solution for OCR in sensitive clays along with lab 

reference values from consolidation tests for: a) Quyon; b) Slomarka; c) Saint Hilaire; 

and d) Dragvoll clays. 

4. Piezocone screening in organic clays 

Organic soils are often associated with high compressibility and low shear strength. Moreover, 

organic clays commonly exhibit problems in construction, foundation performance, and stability of 

embankments, excavations, and slopes [60]. Therefore, it is very important to be able to identify 

these geomaterials when CPTU soundings encounter soft organic clays, organic silts, peats, muskeg, 

gyttja, and sulfide clays [61,62]. 

A review of CPTU data on a variety of different organic clays and soils show that when the 

three expressions from equations (8), (9), and (10) are used, a set of unmatched OCR profiles occur 

in the following hierarchal order [20]: 

0.53 u2 < 0.33 qnet < 0.60 qE (12)  

Therefore, equation (12) serves as the CPTU signature that is characteristic of organic 

fine-grained soils. To illustrate this, eight well-documented organic clay and peaty sites are 

summarized in Table 3. Full piezocone soundings for these sites are presented in Figures 11 and 12.  
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Table 3. Select CPTU database of organic clays used for case study applications. 

Clay Site Location OCR Method Reference(s) 

Sarapuí II soft organic clay* Brazil IL [20,63] 

Gammelgarden soft organic clay* Sweden IL, CRS [20,64] 

Nichollet soft peat* MN, USA IL [65,66] 

Belfast organic silty ―sleech‖* Ireland IL [67,68] 

Roback soft organic clay* Sweden IL [69] 

Suisun Bay soft organic clay* CA, USA IL [70] 

Bolling AFB soft organic clay* Washington, DC, USA IL [20,71] 

Lampen soft organic clay* Sweden CRS [72,73] 

Soft peat, Toronto Portlands ON, Canada na [21] 

Soft peat, Sherman Island CA, USA CRS, IL [21] 

Soft peat, Green Lake MN, USA IL [21] 

Soft peat, St. Paul MN, USA IL [20] 

Notes: * = Presented in current study; IL = Incremental load oedometer tests; CRS = Constant Rate of Strain 

consolidation tests; na = not available. 

 

Figure 11. Piezocone soundings for organic soils located at: a) Sarapuí II, Brazil; b) 

Gammelgarden, Sweden; c) Nichollet, Minnesota; and d) Belfast, Ireland. 
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Figure 12. Piezocone soundings for organic soils at: a) Roback, Sweden; b) Suisun Bay, 

California; c) Bolling AFB, Washington, DC; and d) Lampen, Sweden. 

When the CPTU screening approach is applied to the investigated organic soil deposits as 

presented in Figures 13 and 14, the three profiles from the expressions do not agree, thus serving as a 

warning sign and identification of organic geomaterials. These profiles show clear disagreement 

when compared to lab reference values from consolidation tests. Note that the hierarchical behavior 

aforementioned by Equation (12) is evident. 

 

Figure 13. Simplified OCR expressions for CPTU in organic soils along with lab 

reference values from consolidation tests at: a) Sarapuí II; b) Gammelgarden; c) 

Nichollet; and d) Belfast clays. 
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Figure 14. Simplified OCR expressions for CPTU in organic clays along with lab 

reference values from consolidation tests for: a) Roback; b) Suisun Bay; c) Bolling AFB; 

and d) Lampen clays. 

4.1. Preconsolidation stress of organic clays from CPTU 

For evaluating the preconsolidation stress of soft organic soils by CPTU, it has been 

recommended to lower the coefficients of equations (8), (9), and (10). This could be justified 

because organic clays and peats exhibit rather high friction angles (’ > 40°) when compared to 

regular clays [60,61]. By use of a higher friction angle (e.g., Mc > 1.2) in equations (1), (2), (3), 

and (7), the resulting set of simplified equations (8), (9), and (10) would consequently have smaller 

coefficients for qnet,u2, and qE. 

For instance, for the soft organic clays of Brazil, modified expressions have been developed [16,74]: 

p’ = 0.125 qnet (13)  

p’ =  0.154 qE (14) 

In another approach, for CPTU in a variety of soil types, a generalized solution retains the 0.33 

coefficient of equation (8) and employs a power law algorithm in the form [75,76]: 

p’ = 0.33 qnet
m’

 (units of kPa) (15a)  

where the exponent m’ depends upon the soil behavioral type ( = 1.0 intact inorganic clays; 0.90 

organic clays; 0.85 silt mixtures; 0.80 silty sands; and 0.72 clean quartz-silica sands). Figure 15 

shows the preconsolidation stresses p’ for various soil types plotted versus the net cone resistance. 

The corresponding expression in dimensionless terms is given by: 

p’ = 0.33 qnet
m’

 (atm/100)
1-m’

 (15b)  
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Figure 15. General relationship for preconsolidation stress of soils and CPT net cone 

resistance in different geomaterials (adapted after Agaiby and Mayne [76]).  

where atm = reference pressure equal to 1 atmosphere ≈ 1 bar = 100 kPa. 

By adopting equation (15) with exponent m’ = 0.90, the estimated preconsolidation profiles 

match well with the stress history results from one-dimensional consolidation tests for the 8 case 

studies involving soft organic clays and peats, as shown in Figures 16 and 17. 

 

Figure 16. CPTU profiles for preconsolidation stress in organic soils along with lab 

reference values from consolidation tests for: a) Sarapuí II; b) Gammelgarden; c) 

Nichollet; and d) Belfast. 
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Figure 17. CPTU profiles for preconsolidation stress in organic soils along with lab 

reference values from consolidation tests for: a) Roback; b) Suisun Bay; c) Bolling AFB; 

and d) Lampen. 

5. Conclusions 

The identification of regular clays that are insensitive and inorganic from organic clays and 

sensitive or quick clays using CPTU is normally handled via empirical soil behavioral classification 

charts that sometimes miss the mark. As an alternate screening method for separating these three clay 

categories, a preconsolidation stress approach can be utilized which is based in a hybrid formulation 

of spherical cavity expansion theory and critical state soil mechanics (SCE-CSSM).  

For CPTU soundings in ―regular‖ or ―normal‖ soft to firm clays that are inorganic and 

insensitive, a first order estimate of preconsolidation stresses is found from: p’ ≈ 0.53 u2 ≈ 

0.33 qnet ≈ 0.60 qE.  

When applying this approach to sensitive, quick, and structured clays, a hierarchal sorting 

shows: 0.60 qE < 0.33 qnet < 0.53 u2. 

where the three corresponding profiles of p’ and OCR do not agree. Once identified properly, a 

modified SCE-CSSM solution is used to obtain the undrained rigidity index (IR) based on the 

normalized cone tip resistance (Q = qnet/vo’) and porewater pressure readings (U = u2/vo’). The 

modified solution utilizes the effective stress friction angle (’) defined at: (i) peak stress (qmax’) and 

(ii) maximum obliquity (MO’). These can be obtained from the NTH limit plasticity solution. The 

derived expressions provide three formulations for clay stress history that relate the OCR to CPTU in 

terms of net resistance (qt − vo), excess porewater pressures (u2 − u0), and effective cone resistance 

(qt − u2), all of which agree well with the benchmark laboratory consolidation testing and 

corresponding profiles of preconsolidation stress at the site.  

In contrast, when the simplified SCE-CSSM approach is applied to organic soils, a reversed 

hierarchal sorting shows: 0.53 u2 < 0.33 qnet < 0.60 qE. 

Once properly recognized, the preconsolidation stress of organic clays can be evaluated from a 

power law expression with net cone resistance.  
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Several case study examples from regular clays, sensitive clays, and organic soils that have been 

tested both in the laboratory (e.g., index parameters, plasticity, sensitivity, organic content, 

consolidation, triaxial) and by field CPTU soundings are presented in the paper to show the validity 

of the hierarchal approach. 
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